

Code No. : 13119F

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) III-Semester Main Examinations, December-2018
 Introduction to Communication Systems
 (Open Elective-1)

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	CO	PO
	Part-A (10 $\times 2=20 \mathrm{Marks}$)				
	Write the frequency range of AM radio broadcast stations.	2	1	1	1
2.	An AM signal has a 32-W carrier and 4.5 W in each sideband. Compute the percentage of modulation.	2	3	2	2
3.	Draw the block diagram of FM generator using phase modulator.	2	1	3	1
4.	Compare tuned radio frequency and superheterodyne receiver.	2	3	3	1
5.	Calculate the quantizing noise on a 10 -bit A / D converter with a voltage range up to 5 V	2	2	4	2
6.	List the primary benefits of using digital techniques in communication.	2	1	6	1
7.	Define transmission efficiency.	2	1	4	1
8.	What factors limit the free-space transmission of information on a light beam?	2	2	6	1
9.	List few applications of AM and FM.	2	2	2	1
10.	Draw return to zero and Manchester coded signal for data ' 1010 '. $\text { Part }-B(5 \times 8=40 \text { Marks })$	2	2	4	2
11. a)	Define simplex, half duplex and full duplex and write applications of each.	4	1	1	1
b)	An AM transmitter radiates 50 W , when carrier is modulated by single sinusoidal signal. Calculate peak amplitude of the carrier before and after modulation for modulation index of $\mu=0.707$.	4	3	2	2
12. a)	State how the frequency of a carrier varies in a PM system when the modulating signal amplitude and frequency change.	4	2	3	1
b)	The signal-to-noise ratio in an FM system is 4:3. The maximum allowed deviation is 4 kHz . Determine the frequency deviation, introduced by the phase shift caused by the noise when the modulating frequency is 650 Hz . What is the real signal-to-noise ratio?	4	3	3	2
13. a)	Describe the working of Time Division multiplexing using pulse Amplitude modulation with the help of block diagram.	4	1	4	1
	A D/A converter has a 12 -bit binary input. The output analog voltage range is 0 to 5 V . How many discrete output voltage increments are there and what is the smallest voltage increment	4	3	4	2

14. a) Determine the hamming bits for 12 -bit data ' 101101101100 ' transmitted serially.
b) Describe how both analog and digital signals may modulate a light transmitter.
15. a) Write the advantages and disadvantages of FM over AM.
b) Describe about internal and external sources of noise.
16. a) Analyze and Compare the performance parameters of ASK, FSK and PSK techniques.
b) Write advantages and disadvantages of microwaves.
17. Answer any two of the following:
a) Discuss pre-emphasis and de-emphasis techniques in FM
b) Describe the principle of frequency division multiplexing with the help of block diagram.
c) Explain the operation of cyclic redundancy check with an example
$\left.\left\lvert\, \begin{array}{llll}4 & 3 & 5 & 2 \\ 4 & 1 & 4 & 1 \\ 4 & 2 & 3 & 1 \\ 4 & 1 & 3 & 1 \\ 4 & 4 & 4 & 2 \\ 4 & 2 & 6 & 1 \\ 4 & 1 & 3 & 1 \\ 4 & 1 & 4 & 1 \\ 4 & 2 & 5 & 1\end{array}\right.\right]$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	70
2	Knowledge on application and analysis (Level-3 \& 4)	30
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	--

